MIT: Major Breakthrough in Solid State Battery Research, Dendrite Formation Caused by Mechanical Stresses, Can Be, “Rendered Harmless”

November 24th, 2022

This is a very significant discovery.

DoD, DARPA, DoE… *wink*

Via: MIT News:

Chiang says in the group’s earlier work, they made a “surprising and unexpected” finding, which was that the hard, solid electrolyte material used for a solid-state battery can be penetrated by lithium, which is a very soft metal, during the process of charging and discharging the battery, as ions of lithium move between the two sides.

This shuttling back and forth of ions causes the volume of the electrodes to change. That inevitably causes stresses in the solid electrolyte, which has to remain fully in contact with both of the electrodes that it is sandwiched between. “To deposit this metal, there has to be an expansion of the volume because you’re adding new mass,” Chiang says. “So, there’s an increase in volume on the side of the cell where the lithium is being deposited. And if there are even microscopic flaws present, this will generate a pressure on those flaws that can cause cracking.”

Those stresses, the team has now shown, cause the cracks that allow dendrites to form. The solution to the problem turns out to be more stress, applied in just the right direction and with the right amount of force.

While previously, some researchers thought that dendrites formed by a purely electrochemical process, rather than a mechanical one, the team’s experiments demonstrate that it is mechanical stresses that cause the problem.

The team demonstrated that they could directly manipulate the growth of dendrites simply by applying and releasing pressure, causing the dendrites to zig and zag in perfect alignment with the direction of the force.

Applying mechanical stresses to the solid electrolyte doesn’t eliminate the formation of dendrites, but it does control the direction of their growth. This means they can be directed to remain parallel to the two electrodes and prevented from ever crossing to the other side, and thus rendered harmless.

The research team included Christos Athanasiou and Brian Sheldon at Brown University, and Colin Gilgenbach, Michael Wang, and W. Craig Carter at MIT. The work was supported by the U.S. National Science Foundation, the U.S. Department of Defense, the U.S. Defense Advanced Research Projects Agency, and the U.S. Department of Energy.

More: MIT Reports Breakthrough In Solid-State Lithium Battery Development

Leave a Reply

You must be logged in to post a comment.