Newly Discovered Immune Cell Points to Universal Cancer Treatment

January 26th, 2020

Via: New Atlas:

Breakthrough research from an international team of scientists has uncovered a new type of immune cell with the ability to target and kill most kinds of cancer cells. The discovery was previously thought to be impossible and, although it is still untested in human subjects, it offers the potential for revolutionizing immunotherapy as a possible universal cancer treatment.

One of the most groundbreaking recent advances in cancer treatment has been the development of CAR-T immunotherapy. This highly personalized treatment involves harvesting a patient’s immune T cells and reprogramming them to target specific proteins found on the patient’s cancer cells.

In 2017 the FDA approved the first treatment of this type for young patients with a rare kind of blood and bone marrow cancer. However, the therapy is expensive, time-consuming to produce, and not without the risk of severe side effects.

The big limitation faced by researchers working on CAR-T therapies is that there isn’t one universal T-cell receptor (TCR) that can target different kinds of cancers in all patients. In fact, it was generally thought this kind of universal cancer-targeting TCR simply didn’t exist.

A new study, published in the prestigious journal Nature Immunology, suggests a universal TCR does exist, and it has been found. The research describes the discovery of an immune T-cell that displays a novel receptor that seems to have the ability to target and kill a broad variety of human cancer cell types while leaving healthy cells alone.

The newly discovered T-cell is thought to be able to distinguish cancer cells from healthy ones by homing in on a surface molecule called MR1. While this molecule is present on almost all cells in the human body, the researchers suspect it presents differently on cancer cells, allowing for a single TCR to be able to effectively target a broad variety of tumors.

Leave a Reply

You must be logged in to post a comment.