Velkess: New Residential Scale Flywheel Design
December 21st, 2013Via: Scientific American:
Renewables could be the world’s primary source of energy if only someone could solve the storage problem—how to store lots of electricity cheaply on a wide scale? Batteries are too expensive and don’t last long enough. Pumped hydro is cheap but not feasible for most locations. Thermal storage is promising but still too expensive or hard to scale. Compressed air is cheap and scalable but not yet efficient enough (although LightSail, a new company backed by Peter Thiel, Vinold Khosla and Bill Gates, hopes to change that). And what about flywheels? The biggest player, Beacon Power, went bankrupt in 2011.
Flywheels may be getting a second life, however. Silicon Valley inventor Bill Gray has a new flywheel design that would deliver distributed and highly scalable storage for around $1,333 a kilowatt, making it price competitive with pumped hydro and compressed air. With an efficiency of more than 80 percent, it would rival the best storage alternatives, and come with a 10-year guarantee. And it would make a perfect complement to an off-grid house with a solar photovoltaic (PV) system, able to charge fully in five hours—within the charging time of most solar PV systems—and store 15 kilowatt-hours of power, enough to run a modest house from sunset to sunrise.
Gray calls his invention the Velkess (for VEry Large Kinetic Energy Storage System). He is currently raising money for the prototype in a Kickstarter campaign.
The Velkess improves on traditional flywheels by better managing the natural “wobble” of a spinning mass. Traditional flywheels have been very expensive because engineers align the natural axis of the wheel’s rotation with the desired rotation of the generator. Thus, they are always struggling to minimize the natural wobble of the wheel using very expensive magnets and bearings, high-precision engineering and materials like high-grade carbon fiber or rigid steel. Beacon’s flywheel for grid storage cost a whopping $3 million per megawatt-hour.
Instead of trying to fight the wobble, Gray redirected it by suspending the wheel within a gimbal—the same concept that makes a gyroscope work.
The gimbal in the Velkess is asymmetrical, so the two axes of rotation—the flywheel axis as well as that of the rotor, which drives the brushless, inducting DC motor—are not on the same plane, and have different periods of frequency. This dampens the resonance effects that make traditional flywheels hard to control (a resonant disturbance in one of the planes can intensify until the device shatters). With the gimbal, resonance in one plane is translated into the other, which is nonresonant at the same frequency. Accordingly, only very loose engineering tolerances—about one sixteenth of an inch—are required to build the device.
Related:
Residential Energy Storage with Underground Flywheels