Intense Light Passing Through Non Conductive Material, ‘Can Generate Magnetic Effects That Are 100 Million Times Stronger Than Previously Expected’
April 15th, 2011Intense light can cause glass to exhibit strong magnetic properties. Wow, this is a weird one. The buzz kill occurs when you read that the light needs to be focused to 10 million watts per square centimeter to realize the effect. The researchers are looking for materials that work at lower intensities.
Via: PhysOrg:
A dramatic and surprising magnetic effect of light discovered by University of Michigan researchers could lead to solar power without traditional semiconductor-based solar cells.
The researchers found a way to make an “optical battery,” said Stephen Rand, a professor in the departments of Electrical Engineering and Computer Science, Physics and Applied Physics.
In the process, they overturned a century-old tenet of physics.
“You could stare at the equations of motion all day and you will not see this possibility. We’ve all been taught that this doesn’t happen,” said Rand, an author of a paper on the work published in the Journal of Applied Physics. “It’s a very odd interaction. That’s why it’s been overlooked for more than 100 years.”
Light has electric and magnetic components. Until now, scientists thought the effects of the magnetic field were so weak that they could be ignored. What Rand and his colleagues found is that at the right intensity, when light is traveling through a material that does not conduct electricity, the light field can generate magnetic effects that are 100 million times stronger than previously expected. Under these circumstances, the magnetic effects develop strength equivalent to a strong electric effect.
“This could lead to a new kind of solar cell without semiconductors and without absorption to produce charge separation,” Rand said. “In solar cells, the light goes into a material, gets absorbed and creates heat. Here, we expect to have a very low heat load. Instead of the light being absorbed, energy is stored in the magnetic moment. Intense magnetization can be induced by intense light and then it is ultimately capable of providing a capacitive power source.”
…
The light must be shone through a material that does not conduct electricity, such as glass. And it must be focused to an intensity of 10 million watts per square centimeter. Sunlight isn’t this intense on its own, but new materials are being sought that would work at lower intensities, Fisher said.