The Flywheel

October 16th, 2007

The flywheel is such a simple concept that it’s painful to think too much about it. Now, if someone would just dedicate, say, 1% of the assets and engineering hours that will go into the next iteration of the dead end Toyota Prius…

While the flywheel concept is simple, good rotor design and frictionless magnetic bearings represent the rocket science.

Via: Damn Interesting:

In a world where everything from our automobiles to our underwear may soon run on electricity, more efficient portable power is a major concern. After a century of stagnation, chemical and ultracapacitor batteries have recently made some strides forward, and more are on the horizon. But the most promising way of storing energy for the future might come from a more unlikely source, and one that far predates any battery: the flywheel.

In principle, a flywheel is nothing more than a wheel on an axle which stores and regulates energy by spinning continuously. The device is one of humanity’s oldest and most familiar technologies: it was in the potter’s wheel six thousand years ago, as a stone tablet with enough mass to rotate smoothly between kicks of a foot pedal; it was an essential component in the great machines that brought on the industrial revolution; and today it’s under the hood of every automobile on the road, performing the same function it has for millennia—now regulating the strokes of pistons rather than the strokes of a potter’s foot.

Ongoing research, however, suggests that humanity has yet to seize the true potential of the flywheel. When spun up to very high speeds, a flywheel becomes a reservoir for a massive amount of kinetic energy, which can be stored or drawn back out at will. It becomes, in effect, an electromechanical battery.

The capabilities of such a device are as extraordinary as its unique design. A traditional lead-acid cell– the battery most often used in heavy-duty power applications– stores energy at a density of 30-40 watt-hours per kilogram: enough to power a 100-watt bulb for about 20 minutes. A flywheel-based battery, on the other hand, can reach energy densities 3-4 times higher, at around 100-130 watt-hours per kilogram. Unlike the battery, the flywheel can also store and discharge all that energy rapidly without being damaged, meaning it can charge up to full capacity within minutes instead of hours and deliver up to one hundred times more power than a conventional battery. Ancient Egyptian potter’s wheelWhat’s more, it’s unaffected by extreme temperatures, boasts an efficiency of 85-95%, and has a lifespan measured in decades rather than years.

Posted in Energy | Top Of Page

Comments are closed.